US 7,590,983 B2

23

may be available to the “value portfolio” worker 155 as well
as all other jobs 182-1 to 182-N running on all other node
computers 800-1 to 800-N within a particular service. Then,
according to the “value portfolio” worker 155, one thousand
separate descendant jobs 182-1 to 182-1000 named, for
example, “value instrument no. 1,” “value instrument no. 2,”
etc., are divided out and sent to the scheduler 600 for assign-
ment to an available node computer 800 within the service.
The one thousand descendant jobs 182-1 to 182-1000 may
each be sent to and processed on available node computers
800-1 to 800-N. During processing, each of the descendant
jobs 182-1 to 182-1000 has access to the market environment
results computed earlier and stored in the global cache 900.
As aresult, the descendant jobs 182-1 to 182-1000 may not
need to perform the yield curve computation themselves and
may not need to contact the calling application 180 for such
information, but rather, can more quickly obtain the results of
the yield curve computation stored in the global cache 900.
Upon completion of each of the one thousand descendant jobs
182-1 to 182-1000, the “value portfolio” job 182 aggregates
the outputs from the “value instrument” jobs 182-1 to 182-
1000 for further computation of a portfolio value result.

H. Method of Troubleshooting/Debugging One Embodi-
ment of a System

One embodiment of the system 10 also has additional
functionality that may allow a worker 155 to be deployed on
a local computer 100 without accessing the compute back-
bone 300 infrastructure or the network 200. To allow an
applications developer 30 to debug its worker modules 195-1
to 195-N locally on its local computer 100 (which, in one
embodiment, is the development host for the applications
developer 30), the compute backbone 300 is capable of (i)
providing a simplified replica of itself, including an API 190,
and (ii) initializing worker modules 195-1 to 195-N in the
same process space in which the calling application 180
resides. Such a capability may enable an applications devel-
oper 30 to debug functionality, such as persistence and
parameter passing, in an environment where the developer 30
has access to all necessary information about both the calling
application 180 and the environment on which it is running
(i.e., the replicated functionality of the compute backbone
300). For example, if a worker module 195 performs properly
on the local computer 100, it will also perform properly when
deployed on the compute backbone 300.

FIG. 11 illustrates certain operations performed in one
embodiment of a method of running a calling application 180
in local mode. For any particular calling application 180, an
applications developer 30 may create both a worker module
195 and one or more jobs 182 (step 1910). At initialization,
the developer 30 links the calling application 180 to the API
190 file associated with local mode operation (as opposed to
the API 190 file associated with network mode operation)
(step 1920). The API 190 then loads the worker module 195
into the process space of the local computer 100 (step 1930).
The API 190 ensures that a replica of all major functions
performed by the compute backbone 300 (e.g., scheduling,
caching, etc.) are loaded into the data storage devices 110-1 to
110-N of'the local computer 100 (step 1940). The worker 155
is then processed on the CPU 120 of the local computer 100
(step 1950). Unlike the parallel computing operation of net-
work mode on the actual compute backbone 300 infrastruc-
ture, processing in local mode is accomplished sequentially,
or perhaps concurrently if multithreading is used.

Although illustrative embodiments and example methods
have been shown and described herein in detail, it should be

10

15

20

25

30

35

40

45

50

55

60

24

noted and will be appreciated by those skilled in the art that
there may be numerous variations and other embodiments
which may be equivalent to those explicitly shown and
described. For example, the scope of the present invention is
not necessarily limited in all cases to execution of the afore-
mentioned steps in the order discussed. Unless otherwise
specifically stated, the terms and expressions have been used
herein as terms and expressions of description, not of limita-
tion. Accordingly, the invention is not limited by the specific
illustrated and described embodiments and examples (or the
terms or expressions used to describe them) but only by the
scope of appended claims.

What is claimed is:

1. A system, comprising:

a processor;

atransaction manager in communication with a plurality of
local computers, wherein said transaction manager sup-
ports a plurality of message protocols to enable commu-
nication between said transaction manager and said plu-
rality of local computers, wherein each said local
computer runs a calling application;

a queue in communication with said transaction manager,
wherein said queue receives and stores a plurality of jobs
and task inputs from said transaction manager, sends a
plurality of computation requests to one or more of a
plurality of node computers, and provides computation
results when polled by said transaction manager;

a scheduler in communication with said queue, wherein
said scheduler routes a plurality of incoming tasks to a
plurality of compute functions on the plurality of node
computers and allocates computing resources of said
plurality of node computers,

a service manager in communication with said transaction
manager, said scheduler, and said plurality of node com-
puters, wherein said service manager controls allocation
of computing resources among a plurality of users of
said plurality of local computers such that a failure of
one of said calling applications of one of said users will
not adversely affect another of said calling applications
of another of said users, even if both applications are
running simultaneously; and

a cache in communication with said plurality of node com-
puters, wherein a minimum availability of said system is
defined by an availability of said queue such that addi-
tion of one or more devices to said system downstream
of said queue does not increase a failure probability of
said system.

2. The system of claim 1, wherein said transaction manager
facilitates delivery of each of said plurality of computation
requests from said calling applications to said system.

3. The system of claim 2, wherein said transaction manager
guarantees delivery of each of said plurality of computation
requests from said calling applications to said system.

4. The system of claim 1, wherein each of said calling
applications is created in a different programming language.

5. The system of claim 1, wherein communications
between said transaction manager and each of said plurality
of local computers are secure and involve an authentication
process before access to said system is granted.

6. The system of claim 1, wherein all information pertinent
for a particular one of said plurality of jobs is stored persis-
tently in said queue at least until said job has been completed
or has expired.



